skip to main content


Search for: All records

Creators/Authors contains: "Shuvo, Md. Hossain"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Protein language models (pLMs) trained on a large corpus of protein sequences have shown unprecedented scalability and broad generalizability in a wide range of predictive modeling tasks, but their power has not yet been harnessed for predicting protein–nucleic acid binding sites, critical for characterizing the interactions between proteins and nucleic acids. Here, we present EquiPNAS, a new pLM-informed E(3) equivariant deep graph neural network framework for improved protein–nucleic acid binding site prediction. By combining the strengths of pLM and symmetry-aware deep graph learning, EquiPNAS consistently outperforms the state-of-the-art methods for both protein–DNA and protein–RNA binding site prediction on multiple datasets across a diverse set of predictive modeling scenarios ranging from using experimental input to AlphaFold2 predictions. Our ablation study reveals that the pLM embeddings used in EquiPNAS are sufficiently powerful to dramatically reduce the dependence on the availability of evolutionary information without compromising on accuracy, and that the symmetry-aware nature of the E(3) equivariant graph-based neural architecture offers remarkable robustness and performance resilience. EquiPNAS is freely available at https://github.com/Bhattacharya-Lab/EquiPNAS.

     
    more » « less
  2. Free, publicly-accessible full text available July 1, 2024
  3. Abstract Motivation

    Accurate modeling of protein–protein interaction interface is essential for high-quality protein complex structure prediction. Existing approaches for estimating the quality of a predicted protein complex structural model utilize only the physicochemical properties or energetic contributions of the interacting atoms, ignoring evolutionarily information or inter-atomic multimeric geometries, including interaction distance and orientations.

    Results

    Here, we present PIQLE, a deep graph learning method for protein–protein interface quality estimation. PIQLE leverages multimeric interaction geometries and evolutionarily information along with sequence- and structure-derived features to estimate the quality of individual interactions between the interfacial residues using a multi-head graph attention network and then probabilistically combines the estimated quality for scoring the overall interface. Experimental results show that PIQLE consistently outperforms existing state-of-the-art methods including DProQA, TRScore, GNN-DOVE and DOVE on multiple independent test datasets across a wide range of evaluation metrics. Our ablation study and comparison with the self-assessment module of AlphaFold-Multimer repurposed for protein complex scoring reveal that the performance gains are connected to the effectiveness of the multi-head graph attention network in leveraging multimeric interaction geometries and evolutionary information along with other sequence- and structure-derived features adopted in PIQLE.

    Availability and implementation

    An open-source software implementation of PIQLE is freely available at https://github.com/Bhattacharya-Lab/PIQLE.

    Supplementary information

    Supplementary data are available at Bioinformatics Advances online.

     
    more » « less
  4. null (Ed.)
    Abstract The DeepRefiner webserver, freely available at http://watson.cse.eng.auburn.edu/DeepRefiner/, is an interactive and fully configurable online system for high-accuracy protein structure refinement. Fuelled by deep learning, DeepRefiner offers the ability to leverage cutting-edge deep neural network architectures which can be calibrated for on-demand selection of adventurous or conservative refinement modes targeted at degree or consistency of refinement. The method has been extensively tested in the Critical Assessment of Techniques for Protein Structure Prediction (CASP) experiments under the group name ‘Bhattacharya-Server’ and was officially ranked as the No. 2 refinement server in CASP13 (second only to ‘Seok-server’ and outperforming all other refinement servers) and No. 2 refinement server in CASP14 (second only to ‘FEIG-S’ and outperforming all other refinement servers including ‘Seok-server’). The DeepRefiner web interface offers a number of convenient features, including (i) fully customizable refinement job submission and validation; (ii) automated job status update, tracking, and notifications; (ii) interactive and interpretable web-based results retrieval with quantitative and visual analysis and (iv) extensive help information on job submission and results interpretation via web-based tutorial and help tooltips. 
    more » « less
  5. null (Ed.)
    Sequence-based protein homology detection has emerged as one of the most sensitive and accurate approaches to protein structure prediction. Despite the success, homology detection remains very challenging for weakly homologous proteins with divergent evolutionary profile. Very recently, deep neural network architectures have shown promising progress in mining the coevolutionary signal encoded in multiple sequence alignments, leading to reasonably accurate estimation of inter-residue interaction maps, which serve as a rich source of additional information for improved homology detection. Here, we summarize the latest developments in protein homology detection driven by inter-residue interaction map threading. We highlight the emerging trends in distant-homology protein threading through the alignment of predicted interaction maps at various granularities ranging from binary contact maps to finer-grained distance and orientation maps as well as their combination. We also discuss some of the current limitations and possible future avenues to further enhance the sensitivity of protein homology detection. 
    more » « less
  6. null (Ed.)
    Abstract Motivation Protein model quality estimation, in many ways, informs protein structure prediction. Despite their tight coupling, existing model quality estimation methods do not leverage inter-residue distance information or the latest technological breakthrough in deep learning that has recently revolutionized protein structure prediction. Results We present a new distance-based single-model quality estimation method called QDeep by harnessing the power of stacked deep residual neural networks (ResNets). Our method first employs stacked deep ResNets to perform residue-level ensemble error classifications at multiple predefined error thresholds, and then combines the predictions from the individual error classifiers for estimating the quality of a protein structural model. Experimental results show that our method consistently outperforms existing state-of-the-art methods including ProQ2, ProQ3, ProQ3D, ProQ4, 3DCNN, MESHI, and VoroMQA in multiple independent test datasets across a wide-range of accuracy measures; and that predicted distance information significantly contributes to the improved performance of QDeep. Availability and implementation https://github.com/Bhattacharya-Lab/QDeep. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less